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ABSTRACT 
This article presents a study of a mounting system that is used to isolate vibrations in motorcycles. The isolating 

system consists of the powertrain assembly, swing-arm assembly and the mounts that are used for isolation. In 

addition to mounting the powertrain in place, engine mounts are used to minimize the transmitted forces from the 

engine to the frame. The governing equations of motion are being derived for a V-Twin engine which is generally 

used in motorcycle applications. The loads that need to be minimized are the loads due to the shaking force. These 

forces are generated in part as a result of the rotating unbalance due to eccentric masses and due to the acceleration 

of the moving masses that the reciprocating engine consists of. An optimization problem is first set up to determine 

the mount stiffness rates in all three principal directions. Then the effect of the varying engine speed on mount 

characteristics is studied. Shape optimization is also performed to find the geometrical mount shape due to the 

stiffness values in the principal direction of the mount.     

 

KEYWORDS: Motorcycle mounts design; Engine mounts; Vibration isolation; Shape optimization. 

 

INTRODUCTION 
This paper discusses the V-Twin engine configuration that is commonly used in motorcycle applications. There 

are two sources of vibration that affect the performance of a motorcycle engine mount system; the first one is due 

to the shaking forces which are generated due to the engine imbalance in the moving parts inside the engine. This 

force is transmitted to the frame through the mounting system. The second force is due to the road loads which 

are caused by the irregularities in the road profile. These forces are transmitted to the frame thorough the tire 

patch. The road load could be periodic or non-periodic whereas the shaking load is periodic. This paper focuses 

on only on the shaking loads. 

 

This work focuses on designing the most suitable mounting system that provides isolation against forces 

transmitted from the powertrain to the frame. It is known that force and motion isolation are the major problems 

that engineers encounter when designing an engine mount. Motorcycle engines contain reciprocating parts that 

produce shaking forces due to the movement of various parts of the engine. The main objective herein is to 

minimize these shaking forces. This objective is achieved by supporting the powertrain by using a resilient support 

or an isolator. The largest lumped mass that the vehicle carries is the powertrain, which is attached to the frame 

using rubber mounts. These engine mounts are generally reinforced bonded-rubber bushings (figures 1 and 2).  
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Figure 1. Front engine mount 

 

A substantial amount of research has been done in the area engine mount design for automotive and aircraft 

applications. However, the mounting system in motorcycle applications has its own unique challenge. The 

motorcycle rear suspension system is coupled to the powertrain through the shaft which to the complexity of the 

problem. On top of this, the motorcycle mounting system has to withstand the road loads as well. The mounting 

system that is used in these cases must ensure low vibration transmission from/into the engine. There are a lot of 

factors to consider when looking at the source of vibration, which could be internal or external or both.  

 

 
Figure 2. Rear engine mount 

 

Spiekermann, et al. (1985), discussed the issue of minimizing the forces that are transmitted through the mounting 

system. He explored the forces that are generated from the rotational imbalance and reciprocating masses. Ford 

(1985), presented a design procedure for the front wheel drive engine idle isolation in which a six degree of 

freedom lumped system is used to represent the engine mount. Swanson at al. (1993), studied the mounting system 

of aircraft engines by minimizing the loads transmitted to the frame with an addition of constraint due to the 

deflection present from the static weight of the engine. Ashrafiuon (1993), explored the same behavior taking into 

consideration the flexibility of the frame. Sui (2003) emphasized on the role of mounts in achieving better vehicle 

handling characteristics and rider comfort as well as a resulting vibration caused by engine firing force and other 

sources. Liu (2003) presents a method used in the optimization design of engine mounts. The constraint problem 

is solved using some of the known parameters such as engine center of gravity, mount stiffness rates and mount 

location and/or orientation. Courteille and Mortier (2005) present a new technique to find an optimized and robust 

solution for the mounting system. Multi objective algorithm (Pareto optimization) is used as a base to the multi 

objective robust optimization problem. The use of this technique enhances the vehicle isolation characteristics.  

 

This paper presents a new method to design the mounting system in a motorcycle. It focuses on the internal 

shaking forces which are created due to the engine imbalance as the source of vibration which will be minimized. 

The shaking force is defined as the sum of the inertia and static forces that are transmitted to the frame through 

the mounting system as suggested by Kaul, (2006). The mounting system consists of a pair of mount that support 
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the front of the powertrain and another pair supports the rear end. The optimization problem is formulated such 

that the mount stiffness, location and orientation are optimized. Before developing the expressions for shaking 

forces in a V-Twin engine, an analysis will be performed to develop expressions for shaking forces in a single 

cylinder engine. 

 

The paper is organized as follows. Section 2 discusses the dynamic analysis in which the engine mount is 

characterized and the six DOF model is set up. Section 3 discusses the shaking forces and develops expression 

for the shaking forces for a single cylinder engine first, then expanding these expressions to accommodate the V-

Twin engine configuration. The optimization problem formulation is presented in section 4. The concept of shape 

optimization is presented in section 5. Section 6 and section 7 presents the numerical results and conclusions.  

 

DYNAMIC ANALYSIS  
Figure 3 shows a schematic diagram of the powertrain along with a pair of mount used. Figure 4 shows a schematic 

diagram of the mount that will be used in this study. The challenge that is faced in this stage is identifying the 

mount properties which are represented in stiffness in all three principal directions, its location and orientation. 

The model represented in Fig. 4 is a simple Voigt model that consists of a rigid body that resembles the powertrain 

which is connecting to the frame using the mounting system. The stiffness k and the damper c represent a single 

D.O.F system with an equation of motion shown in Eq. (1).  

 𝑀𝑥̈ +  𝐶𝑥̇ +  𝐾𝑥 = 𝐹𝑒𝑖𝜔𝑡                                                                                               (1)    

 

In the Eq. (1), F denotes the input force vector that can be caused be either the shaking force or the road load or 

both. M, C and K represent the mass, damping and stiffness matrices respectively whereas x represents the 

displacement vector. 

 

 
Figure 3. Schematic diagram of the engine 
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Figure 4: Schematic diagram of the mount model. 

 

The terms of the inertia matrix M of the powertrain are with respect of the global coordinate system. In order to 

account for different orientations of the mounts; the stiffness and damping which are represented in the local 

coordinate system of the mount must be expressed in the global coordinate system which is achieved by using a 

transformation matrix. The mass matrix of the powertrain is represented in Eq. (2). 

 

                            𝑀𝑝.𝑡 =

[
 
 
 
 
 
 
𝑚𝑒          0          0
0        𝑚𝑒           0
0        0       𝑚𝑒

         

0     𝑚𝑒𝑧𝑒 −𝑚𝑒𝑦𝑒

      −𝑚𝑒𝑧𝑒    0   𝑚𝑒𝑥𝑒

   𝑚𝑒𝑦𝑒    −𝑚𝑒𝑥𝑒 0

0     −𝑚𝑒𝑧𝑒 𝑚𝑒𝑦𝑒   
𝑚𝑒𝑧𝑒   0 −𝑚𝑒𝑥𝑒

−𝑚𝑒𝑦𝑒 𝑚𝑒𝑥𝑒 0
        

𝐼𝑥𝑥𝑒       −𝐼𝑥𝑦𝑒 −𝐼𝑥𝑧𝑒

−𝐼𝑥𝑦𝑒           𝐼𝑦𝑦𝑒 −𝐼𝑦𝑧𝑒

−𝐼𝑥𝑧𝑒          −𝐼𝑦𝑧𝑒 𝐼𝑧𝑧𝑒 ]
 
 
 
 
 
 

              (2) 

 

In Eq. (2), Mp.t is the mass of the powertrain assembly, (xe, ye, ze) is the location of the center of gravity of the 

powertrain with respect to the origin of the coordinate system and Ixxe, Iyye, Izze, … are the inertia of the powertrain 

with respect to the origin of the coordinate system. The stiffness and damping matrices of an individual mount 

expressed about its own coordinate system is given by Eqs. (3) and (4). 

 

𝑘𝑖
∗ = [

𝑘𝑥𝑖 0 0
0 𝑘𝑦𝑖 0

0 0 𝑘𝑧𝑖

]                                                                                                     (3)     

𝑐𝑖
∗ = [

𝑐𝑥𝑖 0 0
0 𝑐𝑦𝑖 0

0 0 𝑐𝑧𝑖

]                                                                                                       (4)      

 

A transformation matrix (A) is used in order to transfer both, the stiffness and damping matrices to the global 

coordinate system as follows:  

𝑘𝑖 = 𝐴𝑖
𝑇 𝑘𝑖

∗ 𝐴𝑖  and  𝑐𝑖 =  𝐴𝑖
𝑇 𝑐𝑖

𝑇 𝐴𝑖 where 𝑐𝑖  and 𝑘𝑖 are the individual mount damping and stiffness matrices 

expressed in the global coordinate system. The matrix Ai is a transformation matrix which is a combination of the 

three different rotations  𝜃1, 𝜃2 and 𝜃3 about x, y and z axes with respect to the global coordinate system. 

 

𝐴𝑖 = 

[
 
 
 
 
𝐶𝜃2𝑖𝐶𝜃3𝑖 −𝐶𝜃1𝑖𝑆𝜃3𝑖 + 𝑆𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖 𝑆𝜃1𝑖𝑆𝜃3𝑖 + 𝐶𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖

𝐶𝜃2𝑖𝑆𝜃3𝑖 𝐶𝜃1𝑖𝐶𝜃3𝑖 + 𝑆𝜃1𝑖𝑆𝜃2𝑖𝑆𝜃3𝑖 𝑆𝜃1𝑖𝑆𝜃3𝑖 + 𝐶𝜃1𝑖𝑆𝜃2𝑖𝐶𝜃3𝑖

−𝑆𝜃2𝑖 𝑆𝜃1𝑖𝐶𝜃2𝑖 𝐶𝜃1𝑖𝐶𝜃2𝑖 ]
 
 
 
 

      (5)         

 

In Eq. (5)  𝐶𝜃𝑖 = 𝑐𝑜𝑠(𝜃𝑖) and 𝑆𝜃𝑖 = 𝑠𝑖𝑛(𝜃𝑖). 

The transformed damping and stiffness matrices are shown in Eq. (6)  
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𝐶𝑒 = [
𝐶11 𝐶12

𝐶21 𝐶22

],  𝐾𝑒 = [
𝐾11 𝐾12

𝐾21 𝐾22

]                                                                          (6)   

 𝐾11 = ∑𝑘𝑖 ,     𝐾12 = −∑𝑘𝑖𝑟̃𝑖 , 𝐾21 = 𝐾12   

 𝐾22 =  −∑ 𝑟̃𝑖𝑘𝑖𝑟̃𝑖                                                                                                               (7)                       

 𝐶11 = ∑ 𝑐𝑖 ,    𝐶12 = −∑ 𝑐𝑖𝑟̃𝑖 , 𝐶21 = 𝐶12      

 𝐶22 = −∑ 𝑟̃𝑖𝑐𝑖𝑟̃𝑖                                                                                                                (8)      
 

𝐾𝑒  and 𝐶𝑒 represents the overall damping and stiffness matrices of the powertrain assembly shown in Eq. (6). 𝑟̃𝑖 

represents the skew-symmetric matrix that corresponds to an individual mount position (𝑟𝑥𝑖 , 𝑟𝑦𝑖 , 𝑟𝑧𝑖) and it’s given 

by: 

𝑟̃𝑖 = [

0 −𝑟𝑧𝑖 𝑟𝑦𝑖

𝑟𝑧𝑖 0 −𝑟𝑥𝑖

−𝑟𝑦𝑖 𝑟𝑥𝑖 0
]                                                                                              (9)     

 

In this paper, a six degree of freedom (DOF) model is used to describe the powertrain as a rigid body. In the case, 

the powertrain and the exhaust system which are fixed to the frame via four mount system. The frame is assumed 

to be infinitely rigid. The overall equation of motion (EOM) of the six DOF is given as follows: 

 

                            𝑀𝑒𝑋̈𝑒 + 𝐶𝑒𝑋̇𝑒 + 𝐾𝑒𝑋𝑒 = 𝐹𝑒𝑒
𝑗𝜔𝑡                                                                                 (10) 

 

In Eq. (10), Me, Ce and Ke are 6 x 6 mass, damping and stiffness matrices respectively. Fe denotes the force vector 

at frequency ω due to the engine shaking force caused by engine imbalance described in which will be discussed 

in the next section. The generalized mass matrix is defined with respect to the center of gravity of the powertrain. 

Xe is a 6 x 1 vector that contains three translational displacements x, y and z and three rotational displacements α, 

 and  of the powertrain. To account for different orientations for each mount, the stiffness and damping matrices 

are assembled in their local coordinate systems and then transformed to the global coordinate system using the 

Eq. (3) to Eq. (9).  

 

SHAKING FORCES 
In this section, development of the shaking forces in a single cylinder engine is done first, and then all the 

expression are expanded to accommodate the V-Twin configuration. 

 

Shaking Forces in a Single Cylinder Engine 
Figure 5 shows a schematic diagram of a single cylinder slider crank mechanism. The standard slider crank 

mechanism is the basic building block of virtually all internal combustion engines. Presented next is the position, 

velocity, acceleration and the forces analysis of the slider-crank mechanism. Let the crank radius be r and the 

connecting rod length be l. The crank angle is θ and the angle that the connecting rod makes with the x axis is , 

the crank rotates at a constant speed 𝜔 then: 

                           𝑞 = 𝑟 sin 𝜃 = 𝑙 sin𝜙                                                                                                   (11) 

                           𝜃 =  𝜔𝑡                                                                                                                             (12) 

                           sin 𝜙 =  
𝑟

𝑙
 sin𝜔𝑡                                                                                                             (13) 

                           𝑠 = 𝑟 cos𝜔𝑡  and 𝑢 = 𝑙 cos𝜙                                                                                   (14) 
 

The distance x that is measured from the pivot point O to the slider at point B is given as follows: 

                           𝑥 = 𝑠 + 𝑢 = 𝑟 cos𝜔𝑡 + 𝑙 cos 𝜙                                                                                (15) 

                           cos 𝜙 =  √1 − 𝑠𝑖𝑛2𝜙 = √1 − (
𝑟

𝑙
sin𝜔𝑡)

2

                                                           (16) 

                          𝑥 = 𝑟 𝑐𝑜𝑠𝜔𝑡 + 𝑙 √1 − (
𝑟

𝑙
 𝑠𝑖𝑛𝜔𝑡)

2

                                                                           (17) 

 

The expression given by Eq. (17) gives the position of the piston along the x axis as a function of crank angle θ. 

If a derivative of Eq. (17) is taken once with respect to time, the velocity of the piston will be determined as shown 

below:  
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                           𝑥̇ =  −𝑟𝜔

[
 
 
 

sin𝜔𝑡 + 
𝑟

2𝑙

sin 2𝜔𝑡

√1 − (
𝑟
𝑙
sin 𝜔𝑡)

2

]
 
 
 

                                                             (18) 

 

 

 
Figure 5. Slider Crank Mechanism 

 

If a derivative of the piston velocity is taken once with respect to time, the piston acceleration is obtained as shown 

below:  

                           𝑥̈ =  −𝑟𝜔2 {cos𝜔𝑡 − 
𝑟[𝑙2 (1 − 2𝑐𝑜𝑠2𝜔𝑡) − 𝑟2 𝑠𝑖𝑛4𝜔𝑡]

[𝑙2 − (𝑟 𝑠𝑖𝑛𝜔𝑡)2]
3
2

}                                 (19) 

 

In the velocity expression shown in Eq. (18) and the acceleration expression shown in Eq. (19), a steady state 

solution is considered where it is assumed that the crank speed ω is constant.  

 

Using the binomial theorem, an approximate expression for the position, velocity and acceleration of the piston 

can be written as follows: 

 

                           𝑥 ≅ 𝑙 − 
𝑟2

4𝑙
+  𝑟 (cos𝜔𝑡 + 

𝑟

4𝑙
cos 2𝜔𝑡) 

                           𝑥̇  ≅  −𝑟𝜔 (sin𝜔𝑡 + 
𝑟

2𝑙
sin 2𝜔𝑡)                                                                              (20) 

                           𝑥̈  ≅  −𝑟𝜔2  (cos𝜔𝑡 + 
𝑟

𝑙
cos 2𝜔𝑡)                          

 

The inertia force 𝐹𝑖 is the sum of the inertia forces at points A and B on the slider crank mechanism. 

                           𝐹𝑖 = 𝑚𝐴 𝑎𝐴 + 𝑚𝐵 𝑎𝐵                                                                                                     (21) 

 

http://www.ijesrt.com/


   ISSN: 2277-9655 

[Alkhatib* et al., 5(10): October, 2016]   Impact Factor: 4.116 

IC™ Value: 3.00   CODEN: IJESS7 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [704] 

In Eq. (21), the acceleration term 𝑎𝐵 is the acceleration of the piston which is given in Eq. (20). The acceleration 

term 𝑎𝐴 could be found by taking the second derivative of the position vector at point A with respect to time. The 

position vector that describes the location of point A is given as follows: 

                           𝑅𝐴 = 𝑟 cos𝜔𝑡  𝑖̂ +  𝑟 sin𝜔𝑡 𝑗̂                                                                                        (22) 

 

Differentiate the position vector given in Eq. (22) twice with respect to time and an expression for the acceleration 

at point A is achieved as follows: 

                         𝑎𝐴 = [−𝑟𝛼 sin𝜔𝑡 − 𝑟𝜔2 cos𝜔𝑡] 𝑖̂ +  [𝑟𝛼  cos𝜔𝑡 − 𝑟𝜔2 sin 𝜔𝑡] 𝑗̂                   (23) 
 

In Eq. (22), 𝑖̂ and 𝑗̂ are unit vectors defined along the x and y axis. The inertia force along the x and y axis are 

given as follows: 

 

                        𝐹𝑖𝑥 = −(𝑚𝐴 + 𝑚𝐵) 𝑟𝜔2 𝑐𝑜𝑠𝜔𝑡 − 𝑚𝐵
𝑟2𝜔2

𝑙
 𝑐𝑜𝑠2𝜔𝑡 

                                         −(𝑚𝐴 + 𝑚𝐵) 𝑟𝛼 𝑠𝑖𝑛𝜔𝑡 −  𝑚𝐵

𝑟2𝛼

2𝑙
 𝑠𝑖𝑛2𝜔𝑡               

                           𝐹𝑖𝑦 = 𝑚𝐴 𝑟𝛼 𝑐𝑜𝑠𝜔𝑡 − 𝑚𝐴 𝑟𝜔2 𝑠𝑖𝑛𝜔𝑡                                                                      (24) 

 

In Eq. (24), mA and mB are the equivalent rotating and reciprocating masses respectively. The shaking force is 

𝐹𝑠 = −𝐹𝑖. It is fully described taking into account the equivalent balancing masses as shown below: 

                           𝐹𝑠𝑥 = (𝑚𝐴 + 𝑚𝐵 − 𝑚𝑐𝑏) 𝑟𝜔
2 𝑐𝑜𝑠𝜔𝑡 + 𝑚𝐵

𝑟2𝜔2

𝑙
 𝑐𝑜𝑠2𝜔𝑡 

                                       +(𝑚𝐴 + 𝑚𝐵 − 𝑚𝑐𝑏) 𝑟𝛼 𝑠𝑖𝑛𝜔𝑡 +  𝑚𝐵

𝑟2𝛼

2𝑙
 𝑠𝑖𝑛2𝜔𝑡     

                           𝐹𝑠𝑦 = (𝑚𝐴 − 𝑚𝑐𝑏) 𝑟𝜔
2 𝑠𝑖𝑛𝜔𝑡 − (𝑚𝐴 − 𝑚𝑐𝑏) 𝑟𝛼 𝑐𝑜𝑠𝜔𝑡                                  (25) 

 

In Eq. (25), Fsx and Fsy denote the net shaking forces in the x and y directions respectively and 𝑚𝑐𝑏 is the equivalent 

mass. These shaking forces result from a single cylinder.  

 

Shaking Forces in a V-Twin Engine 

Presented next is the development of shaking force expressions for a V-twin engine shown in Fig. 6. The shaking 

force analysis that was done on a single cylinder engine is generalized to accommodate the V-twin engine and the 

shaking forces will be computed along the global X-Y coordinate system. 

 
Figure 6. V-twin Engine Configuration. 
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In order to determine the shaking forces for the V-Twin engine, the shaking force expression for single cylinder 

engine given in Eq. (25) are used. The forces in each bank will be computed separately. Then by combining the 

corresponding terms of the shaking forces in each bank, the total shaking forces and moments can be computed 

in the global X-Y coordinate system for the V-Twin engine. 

The shaking force in the left cylinder (bank) (Fs)left is given as follows: 

 

(𝐹𝑠)𝑙𝑒𝑓𝑡 = {(𝑚𝐴 + 𝑚𝐵)𝑟𝜔2 𝑐𝑜𝑠(𝜃 − 𝛽) − 𝑚𝑐𝑏1𝑟1𝜔
2 𝑐𝑜𝑠(𝜃 − 𝛽) + 𝑚𝐵

𝑟2𝜔2

𝑙
 𝑐𝑜𝑠2(𝜃 − 𝛽) 

                       + (𝑚𝐴 + 𝑚𝐵)𝑟𝛼 𝑠𝑖𝑛(𝜃 − 𝛽) − 𝑚𝑐𝑏1𝑟1𝛼 𝑠𝑖𝑛(𝜃 − 𝛽) + 𝑚𝐵
𝑟2𝛼

2𝑙
 𝑠𝑖𝑛2(𝜃 − 𝛽)} 𝑙 

                        + {𝑚𝐴𝑟𝜔2 𝑠𝑖𝑛(𝜃 − 𝛽) − 𝑚𝑐𝑏1𝑟1𝜔
2 𝑠𝑖𝑛(𝜃 − 𝛽) − 𝑚𝐴𝑟𝛼 𝑐𝑜𝑠(𝜃 − 𝛽) 

                        + 𝑚𝑐𝑏1𝑟1𝛼 𝑐𝑜𝑠(𝜃 − 𝛽)} 𝑚̂                                                                                              (26) 

(𝐹𝑠)𝑟𝑖𝑔ℎ𝑡 = {(𝑚𝐴 + 𝑚𝐵)𝑟𝜔2 𝑐𝑜𝑠(𝜃 + 𝛽) − 𝑚𝑐𝑏2𝑟2𝜔
2 𝑐𝑜𝑠(𝜃 + 𝛽) + 𝑚𝐵

𝑟2𝜔2

𝑙
 𝑐𝑜𝑠2(𝜃 + 𝛽) 

                        + (𝑚𝐴 + 𝑚𝐵)𝑟𝛼 𝑠𝑖𝑛(𝜃 + 𝛽) − 𝑚𝑐𝑏2𝑟2𝛼 𝑠𝑖𝑛(𝜃 + 𝛽) + 𝑚𝐵

𝑟2𝛼

2𝑙
 𝑠𝑖𝑛2(𝜃 + 𝛽)} 𝑟̂ 

                        + {𝑚𝐴𝑟𝜔2 𝑠𝑖𝑛(𝜃 + 𝛽) − 𝑚𝑐𝑏2𝑟2𝜔
2 𝑠𝑖𝑛(𝜃 + 𝛽) − 𝑚𝐴𝑟𝛼 𝑐𝑜𝑠(𝜃 + 𝛽) 

                        + 𝑚𝑐𝑏2𝑟2𝛼 𝑐𝑜𝑠(𝜃 + 𝛽)} 𝑛̂                                                                                                (27) 
 

In Eq. (26) and Eq. (27), 𝑟̂ 𝑎𝑛𝑑 𝑛̂ are the unit vectors along the x and y axis of the local coordinate system for the 

right cylinder. 𝑙 𝑎𝑛𝑑 𝑚̂  are the unit vectors along the x and y local coordinate system for the left cylinder. mcb1 

and mcb2 are the equivalent masses at distances r1 and r2 for the left and right banks respectively. Combining the 

shaking forces for the right and left cylinders in their corresponding local coordinate system and transferring them 

into the global coordinate system X-Y to come up with the overall shaking forces of the V-twin engine yields: 

 

                           𝐹𝑠𝑥 = 𝑠𝑖𝑛𝛽 {2(𝑚𝐴 + 𝑚𝐵)𝑟𝜔2 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛽 − 2(𝑚𝐴 + 𝑚𝐵)𝑟𝛼 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛽  

                                       + 2𝑚𝐵

𝑟2𝜔2

𝑙
 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝛽 − 𝑚𝐵

𝑟2𝛼

𝑙
 𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝛽} 

                                       + 𝜔2𝑠𝑖𝑛𝛽 {𝑚𝑐𝑏2𝑟2 𝑐𝑜𝑠(𝜃 + 𝛽) −  𝑚𝑐𝑏1𝑟1 𝑐𝑜𝑠(𝜃 − 𝛽)} 
                                       + 𝛼𝑠𝑖𝑛𝛽 {𝑚𝑐𝑏2𝑟2 𝑠𝑖𝑛(𝜃 + 𝛽) −  𝑚𝑐𝑏1𝑟1 𝑠𝑖𝑛(𝜃 − 𝛽)} 
                                       + 𝑐𝑜𝑠𝛽 {2𝑚𝐴𝑟𝜔2 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛽 − 2𝑚𝐴𝑟𝛼 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛽} 
                                       + 𝛼𝑐𝑜𝑠𝛽 {𝑚𝑐𝑏1𝑟1 𝑐𝑜𝑠(𝜃 − 𝛽) + 𝑚𝑐𝑏2𝑟2 𝑐𝑜𝑠(𝜃 + 𝛽)} 
                                       − 𝜔2𝑐𝑜𝑠𝛽 {𝑚𝑐𝑏1𝑟1 𝑠𝑖𝑛(𝜃 − 𝛽) + 𝑚𝑐𝑏2𝑟2 𝑠𝑖𝑛(𝜃 + 𝛽) }                           (28) 

                           𝐹𝑠𝑦 =  𝑐𝑜𝑠𝛽 {2(𝑚𝐴 + 𝑚𝐵)𝑟𝜔2 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛽 + 2(𝑚𝐴 + 𝑚𝐵)𝑟𝛼 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛽 

                                       + 2𝑚𝐵

𝑟2𝜔2

𝑙
 𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝛽 + 𝑚𝐵

𝑟2𝛼

𝑙
 𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝛽} 

                                       −  𝜔2𝑐𝑜𝑠𝛽 {𝑚𝑐𝑏1𝑟1 𝑐𝑜𝑠(𝜃 − 𝛽) + 𝑚𝑐𝑏2𝑟2 𝑐𝑜𝑠(𝜃 + 𝛽)}  
                                       − 𝛼𝑐𝑜𝑠𝛽 {𝑚𝑐𝑏1𝑟1 𝑠𝑖𝑛(𝜃 − 𝛽) +  𝑚𝑐𝑏2𝑟2 𝑠𝑖𝑛(𝜃 + 𝛽)}   
                                       + 𝑠𝑖𝑛𝛽 {2𝑚𝐴𝑟𝜔2 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛽 +  2𝑚𝐴𝑟𝛼 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛽} 
                                       + 𝛼𝑠𝑖𝑛𝛽 {𝑚𝑐𝑏2𝑟2 𝑐𝑜𝑠(𝜃 + 𝛽)  − 𝑚𝑐𝑏1𝑟1 𝑐𝑜𝑠(𝜃 − 𝛽)} 
                                       + 𝜔2𝑠𝑖𝑛𝛽 {𝑚𝑐𝑏1𝑟1 𝑠𝑖𝑛(𝜃 − 𝛽) − 𝑚𝑐𝑏2𝑟2 𝑠𝑖𝑛(𝜃 + 𝛽) }                            (29) 

 

The shaking forces shown in Eq. (28) and Eq. (29) can be employed to find the shaking moments by multiplying 

each term by the moment arm. The moments exist within each bank and their vectors will be orthogonal to the 

cylinder planes. For the right bank, a moment unit vector 𝑛̂ is defined which is perpendicular to the unit vector 𝑟̂. 

Similarly, a moment unit vector 𝑚̂ is defined which is perpendicular to the unit vector 𝑙 for the left bank as shown 

in Fig. 2.  

The shaking moment in the left cylinder (bank) (Ms)left is given as follows: 

(𝑀𝑠)𝑙𝑒𝑓𝑡 = {(𝑚𝐴 + 𝑚𝐵)𝑟𝜔2 𝑐𝑜𝑠(𝜃 − 𝛽)  −  𝑚𝑐𝑏1𝑟1𝜔
2 𝑐𝑜𝑠(𝜃 − 𝛽) + 𝑚𝐵

𝑟2𝜔2

𝑙
 𝑐𝑜𝑠2(𝜃 − 𝛽) 

+  (𝑚𝐴 + 𝑚𝐵)𝑟𝛼 𝑠𝑖𝑛(𝜃 − 𝛽) − 𝑚𝑐𝑏1𝑟1𝛼 𝑠𝑖𝑛(𝜃 − 𝛽)  

+  𝑚𝐵

𝑟2𝛼

2𝑙
 𝑠𝑖𝑛2(𝜃 − 𝛽)}  𝑧 𝑚̂                                                                                    (30) 

The shaking moment in the right cylinder (bank) (Ms)right is given as follows: 
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  (𝑀𝑠)𝑟𝑖𝑔ℎ𝑡 = {(𝑚𝐴 + 𝑚𝐵)𝑟𝜔2 𝑐𝑜𝑠(𝜃 + 𝛽) – 𝑚𝑐𝑏2𝑟2𝜔
2 𝑐𝑜𝑠(𝜃 + 𝛽) + 𝑚𝐵

𝑟2𝜔2

𝑙
 𝑐𝑜𝑠2(𝜃 + 𝛽) 

+  (𝑚𝐴 + 𝑚𝐵)𝑟𝛼 𝑠𝑖𝑛(𝜃 + 𝛽) − 𝑚𝑐𝑏2𝑟2𝛼 𝑠𝑖𝑛(𝜃 + 𝛽)  

+  𝑚𝐵

𝑟2𝛼

2𝑙
 𝑠𝑖𝑛2(𝜃 + 𝛽)}  𝑧 𝑛̂                                        (31) 

 

In Eq. (30) and Eq. (31), z is the moment arm. Combining the shaking moments for the right and left cylinders 

that have been shown Eq. (30) and Eq. (31) in their corresponding local coordinate system and transferring them 

into the global coordinate system X-Y to come up with the overall shaking moments for the V-twin engine yields: 

 

                   𝑀𝑠𝑥 = 𝑐𝑜𝑠𝛽 {2(𝑚𝐴 + 𝑚𝐵)𝑟𝜔2 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛽 + 2𝑚𝐵

𝑟2𝜔2

𝑙
𝑐𝑜𝑠2𝜃𝑐𝑜𝑠2𝛽     

+ 2(𝑚𝐴 + 𝑚𝐵)𝑟𝛼 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛽 + 𝑚𝐵

𝑟2𝛼

𝑙
𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝛽} . 𝑧 

                           − 𝜔2𝑐𝑜𝑠𝛽 {𝑚𝑐𝑏1𝑟1 𝑐𝑜𝑠(𝜃 − 𝛽) + 𝑚𝑐𝑏2𝑟2 𝑐𝑜𝑠(𝜃 + 𝛽)} . 𝑧 

                           − 𝛼𝑐𝑜𝑠𝛽 {𝑚𝑐𝑏1𝑟1 𝑠𝑖𝑛(𝜃 − 𝛽) + 𝑚𝑐𝑏2𝑟2 𝑠𝑖𝑛(𝜃 + 𝛽)} . 𝑧                                      (32) 

                   𝑀𝑠𝑦 = 𝑠𝑖𝑛𝛽 {−2(𝑚𝐴 + 𝑚𝐵)𝑟𝜔2 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛽 − 2𝑚𝐵

𝑟2𝜔2

𝑙
𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝛽 + 2(𝑚𝐴 + 𝑚𝐵)𝑟𝛼 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛽

+ 𝑚𝐵

𝑟2𝛼

𝑙
𝑐𝑜𝑠2𝜃𝑠𝑖𝑛2𝛽} . 𝑧 

                           + 𝜔2𝑠𝑖𝑛𝛽 {𝑚𝑐𝑏1𝑟1 𝑐𝑜𝑠(𝜃 − 𝛽) − 𝑚𝑐𝑏2𝑟2 𝑐𝑜𝑠(𝜃 + 𝛽)} . 𝑧 

                           + 𝛼𝑠𝑖𝑛𝛽 {𝑚𝑐𝑏1𝑟1 𝑠𝑖𝑛(𝜃 − 𝛽) − 𝑚𝑐𝑏2𝑟2 𝑠𝑖𝑛(𝜃 + 𝛽)} . 𝑧                                       (33) 

 

The shaking torque of one cylinder is calculated using the inertia force acting on the piston Fi14 multiplied by the 

distance x from the piston at point B to the origin of the coordinate system at point O as shown in Fig. 5. The free 

body diagram of the piston showing all the acting forces are shown below in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Free Body Diagram of the Piston 

                           𝑇𝑠 = (𝐹𝑖14 ∗ 𝑥)𝑘̂    
                                =  𝑚𝐵𝑥̈ 𝑡𝑎𝑛∅ ∗ 𝑥                                                                                                        (34) 

 

In Eq. (34), 𝑥̈ is the piston acceleration represented in Eq. (5.10). Substitute the piston acceleration expressed in 

Eq. (5.10) into Eq. (20), the shaking torque will be expressed as follows: 

                       𝑇𝑠 = 𝑚𝐵 [−𝑟𝜔2 (𝑐𝑜𝑠𝜔𝑡 +
𝑟

𝑙
𝑐𝑜𝑠2𝜔𝑡) −  𝑟𝛼 (𝑠𝑖𝑛𝜔𝑡 +

𝑟

2𝑙
𝑠𝑖𝑛2𝜔𝑡)] 𝑡𝑎𝑛∅ ∗  𝑙 −

𝑟2

4𝑙
   

+ 𝑟 [𝑐𝑜𝑠𝜔𝑡 +
𝑟

4𝑙
𝑐𝑜𝑠2𝜔𝑡]                                                                                 (35) 

                       𝑡𝑎𝑛∅ ≈  
𝑟

𝑙
 𝑠𝑖𝑛𝜔𝑡 (1 +

𝑟2

2𝑙2
𝑠𝑖𝑛2𝜔𝑡)                                                                              (36) 

 

𝐹𝑖34 

𝐹𝑖14 

𝑚𝐵𝑥̈ 
B 

𝑚𝐵𝑥̈ 

 

𝐹𝑖34 

𝐹𝑖14 
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In Eq. (35), x is described in Eq. (20) and 𝑘̂ is unit vector acting along the z axis which is perpendicular to the 

plane of the slider crank mechanism shown in Fig. 5. Assume that the angular acceleration α is zero and 

approximating tan  as shown in Eq. (36) we get an expression for the shaking torque for both the left and the 

right banks. 

 

The shaking torque in the left bank (Ts)left is as follows: 

          (𝑇𝑠)𝑙𝑒𝑓𝑡 = 
1

2
𝑚𝐵𝑟2𝜔2 [

𝑟

2𝑙
𝑠𝑖𝑛(𝜃 − 𝛽) − 𝑠𝑖𝑛2(𝜃 − 𝛽)

−
3𝑟

2𝑙
𝑠𝑖𝑛3(𝜃 − 𝛽)] 𝑘̂                                                                                                      (37) 

The shaking torque in the right bank (Ts)right is as follows: 

          (𝑇𝑠)𝑟𝑖𝑔ℎ𝑡 = 
1

2
𝑚𝐵𝑟2𝜔2 [

𝑟

2𝑙
𝑠𝑖𝑛(𝜃 + 𝛽) − 𝑠𝑖𝑛2(𝜃 + 𝛽)

−
3𝑟

2𝑙
𝑠𝑖𝑛3(𝜃 + 𝛽)] 𝑘̂                                                                                                      (38) 

The combined shaking torque Ts due to shaking torque from both left and right banks is the algebraic 

sum of both (Ts)left and (Ts)right shown below: 

             𝑇𝑠 = 
1

2
𝑚𝐵𝑟2𝜔2 [

𝑟

𝑙
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛽 − 2𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝛽 −

3𝑟

𝑙
𝑠𝑖𝑛3𝜃𝑐𝑜𝑠3𝛽] 𝑘̂                              (39) 

The final shaking force vector is a 6x1 vector shown below: 

             𝐹𝑠 = [𝐹𝑠𝑥   𝐹𝑠𝑦   𝐹𝑠𝑧   𝑀𝑠𝑥    𝑀𝑠𝑦   𝑇𝑠]
𝑇
                                                                                        (40) 

 

OPTIMIZATION PROBLEM  
The optimization problem for the model represented in Fig. 4, is perused using the Sequential Quadratic 

Programming (SQP) technique described in Rao (2009). The objective function is formulated such that the 

transmitted forces are minimized taking into consideration the constraints imposed on the engine displacement 

due to the static and dynamic loads. The objective function that is used in this work is the weighted sum of the 

transmitted force through the individual mount. The transmitted forces through the mounts are due to the shaking 

forces generated inside the engine. The force transmitted to the frame through the individual mount is given as 

follows: 

𝑓𝑖 = [−𝑘𝑖
∗   𝑘𝑖

∗ 𝑟̃𝑖] [
𝑋𝑡𝑖

𝑋𝑟𝑖
]                                                                                                 (41)   

 

𝑋𝑡𝑖  and 𝑋𝑟𝑖  represents the translational and rotational displacement at the center of gravity of the powertrain as 

result of the shaking load. 𝑘𝑖
∗ is the local stiffness matrix for the individual mount and 𝑟̃𝑖 is the skew symmetric 

from the position vector of the individual mount  represented in Eq. (9). The objective 𝑓𝑤   function is assembled 

by summing the Euclidean norm of the individual force transmitted through each mount.  

                            𝑓𝑤 = ∑ 𝜆𝑗

𝑗

∑‖𝑓𝑖‖

𝑖

                                                                                                      (42) 

In Eq. (42), 𝜆𝑖 is the weighting parameter that corresponds to different loading conditions.  

 

The maximum engine deflection that is allowed creates the constraints on the optimization problem. The static 

deflection, Xst is calculated at the origin of the coordinate system is calculated as: 

                           𝑋𝑠𝑡 = 𝐾−1𝐹𝑠𝑡                                                                                                                (43) 

 

where Fst is the static load acting on the system. 

The engine mounts optimization problem therefore, can be stated as follows: 

𝑀𝑖𝑛 𝑓𝑤 (𝑘𝑖 , 𝑟𝑖 , 𝜃𝑖)                                                                                                           (44)     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑘𝑖, 𝑟𝑖 , 𝜃𝑖)  ≤ 0    𝑗 = 1,… , 𝑁      

 

In Eq. (44), the mount stiffness, location and orientation (𝑘𝑖 , 𝑟𝑖 , 𝜃𝑖) are the design variables that are subjected to a 

total of N number of constraints 𝑔𝑗. The constraints that are used in the above problem consist of constraints on 

the engine mount stiffness, constraints on the mount location based on the available space, constraints on the 

mount orientation that is dictated by symmetry and finally a constraint on the deflection of the center of gravity 

of the powertrain due to the static weight of the powertrain. The objective function fw is defined in Eq. (23). Both 

fw and  𝑔𝑗 are functions of the design variables (𝑘𝑖 , 𝑟𝑖 , 𝜃𝑖). 
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SHAPE OPTIMIZATION  
The geometric dimensions of the isomeric mount shown in Fig. 8 are determined via a parametric study. These 

optimum values for the dimensions are chosen such that a complete deception description of the mount is 

achieved. The mount final shape is determined by minimizing the difference between the mount stiffness values 

obtained from the dynamic analysis performed in the previous section and the mount stiffness values based on its 

geometry which can be found from the finite element analysis. The objective function that is employed herein is 

described in Eq. 45 must satisfy alongside with the bound on the design variables the condition described in Eq. 

46, where xi is the ith design variable and n is the number of the design variables mentioned in Kim (1997). 

                     𝜓 = 𝑤𝑡(1)(𝑘𝑥 − 𝑘𝑥
𝑑𝑒𝑠)2 +  𝑤𝑡(2)(𝑘𝑦 − 𝑘𝑦

𝑑𝑒𝑠)
2
+  𝑤𝑡(3)(𝑘𝑧 − 𝑘𝑧

𝑑𝑒𝑠)2            (45)       

                     𝑥𝑖
𝑚𝑖𝑛  ≤  𝑥𝑖  ≤  𝑥𝑖

𝑚𝑎𝑥  𝑓𝑜𝑟 𝑖 = 1,… , 𝑛                                                                            (46) 

 

In Eq. (45), 𝑤𝑡(𝑖) is the weighting function that corresponds to the stiffness in the ith direction. The superscript 

‘des’ indicates the desired stiffness that is obtained from the dynamic analysis of the mounting system, meanwhile 

the design parameters selected will determine the stiffness values for the geometry that is obtained from the 

nonlinear finite element analysis. The process of determining the design variables is expensive and time 

consuming, therefore in order to reduce the number of function evaluations, the least effective stiffness could be 

dropped from the objective function 𝜓. 

 

 
Figure 8. Schematic of a rubber mount 

 

Figure 8, shows the actual geometry of an engine mount that is used in cars along with its defining parameters. 

This mount is a bush type that is made of rubber. There are a total of six parameters that dictates the shape of the 

mount in which four are used as the design variables namely 𝑡𝑠, 𝑡𝑧 , 𝑡𝑟 and 𝜃. The other two parameters (𝑟𝑖  and 𝑟𝑜) 

are constants. These design variables affects the mount stiffness directly. The weighting function that is used in 

the objective function could be used to take into account the importance of the stiffness in a particular direction. 

The dynamic analysis is done for a motor cycle powertrain in which is supported by four isomeric mounts. The 

connection between the powertrain and the swing-arm are taken into consideration generating a twelve DOF 

system. The exciting force is limited to the internal shaking force at 4000 rpm.  

 

In this work, the stiffness values are obtained using a nonlinear finite element analysis. The geometry shown in 

Fig. 8 is used to generate a mesh for the analysis. The optimization is carried out using ANSYS. Solid 186 is the 

element that has been used for this purpose. Appropriate boundary conditions has been applied to the model which 

is assumed to exhibit small deflections, for this reason the Mooney Rivlin model is sufficient to describe the fully 

incompressible hyperelastic material behavior of rubber as presented by Kim (1997) and Rivlin, (1992). The 

Mooney Rivlin model of the strain energy is expressed as: 

 

                           𝑈 =  𝐶10(𝐼1 −  3) + 𝐶01(𝐼2 −  3)                                                                               (47)        
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I1 and I2 are the first and second strain invariants. The coefficients C10 and C01 are determined from the uniaxial 

tension test. The rubber that is used in this work is carbon black filled natural rubber. The values of the coefficients 

are:  

C10 = 0.03622 and C01 = -0.00335. 

 

All the design variables must satisfy the design range which could be considered as inequality constraints that 

dictates the lower and upper bound of these variables. Each one of these ranges that specify the upper and lower 

limit of the design variables are considered as inequality constraints and are incorporated in the finite element 

optimizer. The static deflection that is due to the static weight of the engine is measured along the axis of gravity.  

 

                           𝛿 =  |
𝐹𝑔

𝑘
|                                                                                                                            (48) 

 

Fg represents the static weight of the engine due to gravity and k represents the stiffness in the gravity direction. 

 

NUMERICAL EXAMPLE 
In this example, the force transmitted through the engine mounts due to the shaking force at 4000 rpm is used to 

formulate the objective function shown in Eq. (42). The mounting system used the example herein is based on 

four identical mounts with a circular cross section as shown in Fig. 9. The design vector contains the individual 

mount stiffness, orientation and position. Lower and upper bound for the design variables are listed in Table 1. 

Deflection constraints on the powertrain are considered due to the static and dynamic loads. The static constraints 

which are placed on the deflection of the powertrain are as follows: 

                           |𝑈𝑠𝑡|  ≤  𝑈𝑚𝑎𝑥                                                                                                                   (49) 

 

In Eq. (49), Ust represents the static deflection of the powertrain at its C.G. due to the static load and Umax represents 

the maximum allowable deflection due to the static load. For this example𝑈𝑚𝑎𝑥 =

 [0.025" 0.05" 0.025"0.5𝑜 0.5𝑜 0.5𝑜]. An additional constraint is placed on the maximum displacement at the 

mount location in the y direction of 0.05 in to prevent premature snubbing.  The shaking force at 4000 rpm and 

the static load vector due to the engine weight are given by Eq. (50) and Eq. (51) respectively.  

                           𝐹𝑠 = [3278   7720   0   0   0   303.8]𝑇                                                                       (50) 

                           𝐹𝑠𝑡 = [0 − 250  0  0  0  0]𝑇                                                                                         (51) 
 

 
Figure 9. Schematic diagram showing the Mount System Layout 

Figure 9, shows the mounting system used in this example which consists of four identical circular cross section 

elastomeric mounts in which, the radial and axial stiffness values fully defines the stiffness characteristics of each 
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mount and both of these stiffness values are used as design variables. A loss factor of 0.3 and a dynamic-to-static 

stiffness coefficient of 1.2 have been used. In order to reduce the total number of design variables, symmetric 

constraints are imposed. This is done by placing two mounts on each side of the x-y plane resulting six position 

variables instead of twelve and four orientation variables instead of twelve. The radial and axial stiffness values 

are identical for all four mounts resulting a total of twelve design variable for the mounting system. The mass of 

the powertrain is 0.5 lb-s2/in and inertia values of the powertrain are given in Table 2.  

 

The optimization problem is done using the SQP technique that employs an optimization routine to minimize the 

objective function. The design variables resulting from the optimization process are shown in Table 3. Once the 

operation is over, the design vector that corresponds to the optimum value of the objective function is known. The 

second part of the problem starts by setting the objective function described in Eq. (45) to minimize the difference 

between the desired stiffness values obtained from the first optimization done through the dynamic analysis and 

the stiffness values obtained from the geometric shape of the mount. The mount is connected to the frame via 

metal steel plates on both sides. These plates are bonded to the mount and the connection is at the mount 

attachment holes. Since the stiffness of the steel plates is higher than the mount stiffness, the constraints are moved 

from the plate holes directly into the mount surface as shown in Fig. 10. The boundary conditions are applied by 

constraining the displacement of the surface of the mount in all directions. The results of the shape optimization 

process are shown in Table 4. The shape optimization takes into account the range of the design variables that 

acts like lower and upper bounds. These bounds are shown in Eq. (52) and the starting shape of the mount and the 

optimized shapes are shown in Figs. 11 and 12. The resulting force plots in the x and y direction for engine speed 

of 4000 rpm is shown in Fig. 13 and the resulting torque plot for the engine speed of 4000 rpm is shown in Fig. 

14.  

 

 

 

                           0.3 ≤  𝑡𝑟  ≤ 0.59 

                              0.3 ≤  𝑡𝑠  ≤ 1.5                                                                                                           (52) 

                              0.5 ≤  𝑡𝑧  ≤ 1.77                 
                                    − 𝜋

18⁄ ≤  𝜃 ≤  −𝜋
6⁄                                  

 

 
Figure10. Isometric View Showing the Boundary Conditions 
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Figure 11: (a) Isometric View of the Initial Geometry, (b) Front View of the Initial Geometry 

 

 
Figure 12: (a) Isometric View of the Optimized Geometry, (b) Front View of the Optimized Geometry 

 

 
Figure 13. Shaking Force in the x and y Directions (4000 rpm) 

0 100 200 300 400 500 600 700 800
-6000

-4000

-2000

0

2000

4000

6000

8000
Shaking Force corresponding to 4000 rpm

S
ha

ki
ng

 f
or

ce
 (

lb
)

Crank angle (deg)

 

 

Fore-aft (x)

Vertical (y)

http://www.ijesrt.com/


   ISSN: 2277-9655 

[Alkhatib* et al., 5(10): October, 2016]   Impact Factor: 4.116 

IC™ Value: 3.00   CODEN: IJESS7 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [712] 

 
Figure 14. Shaking Torque (4000 rpm) 

 

Table 1: Bounds for Design Variables 

    Min. Max. 

Mount Stiffness (x,y) 
lb/in 

100 5000 

Mount Stiffness (z) 500 10000 

Orientation Angles deg. 0 50 

 

Table 2: Inertia Tensor of Powertrain Assembly. 

  x y z 

Ix 20.7 1.86 0.12 

Iy 1.86 12.81 2.3 

Iz 0.12 2.3 26.14 

 

Table 3: MatLab Optimization Results. 

  Load Transmitted Mount Stiffness (lb/in) 

  (lb) x y z 

Initial Guess 1125.32 4750 4750 2400 

Optimized Design 268.60 1266.78 1266.78 4957.44 

 

Table 4: Parameter Optimization Results 

    Initial Optimized Target Stiffness 

Design Variables 

θ (rad) 6.021 5.9052   

tr (in) 0.591 0.4259   

ts (in) 0.787 0.9387   

tz (in) 1.378 1.4016   

Stiffness (klb/in) kx 3.4113 1.267 1.2668 
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ky 9.1838 1.271 1.2668 

kz 1.8525 4.8958 4.9574 

Obj. Function ψ 76.9188 0.0038   

 

 

CONCLUSION 
The design of a shear (bush) type engine mount has been obtained using the geometrical shape optimization using 

the parameterization technique. The method was done through utilizing a nonlinear finite element analysis. Part 

of the design was done using SQP method provided by a MatLab built in function in order to find the target 

stiffness values. It should be noted that multiple starting guess have been used in order to determine the optimum 

value of the objective function in the optimization problem. This is due to the fact that the engine mount 

optimization problem is nonlinear and could provide local minima as a solution to the optimization problem. As 

it can be noticed from the results above that the optimum shape of the mount is acceptable and can be used as the 

final shape. It is worth mentioning that this approach is applicable for any type of engine mounts. The stiffness 

values that are obtained from the shape optimization are slightly different than those values obtained from the 

dynamic analysis; however, the shape obtained from the parametric optimization is acceptable and can be used in 

real design situations. A more accurate representation of the mount connection to the frame is yet to be considered 

in the future work. 
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